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Binary collision contribution to the longitudinal current correlation function of dense fluids:
Numerical results
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Numerical results are obtained for the binary collision contribution to the longitudinal stress correlation
function of Lennard-Jones fluids for a few selected densities and temperatures. It is found that the time
evolution of the correlation function cannot be approximated by a simple, fast decaying function, like a
Gaussian, at any thermodynamic std&1063-651%98)12005-4

PACS numbg(s): 51.10:+y, 61.20.Ne, 66.206:d, 51.20+d

In an earlier papefl], hereafter referred to as I, we de- n
rived an expression for the binary collision contribution to ¢kk(t):3v§+—22f dr dp g(r)G(p/2)[p2+ p3]
the first order space-time memory function of the longitudi- 16y2m?p}
nal current correlation function for a fluid interacting through
a continuous potential.

The Fourier-Laplace transform of the longitudinal current

X[px(t)2—pz], (33)

2
correlation functionC(q,t) is given in the Mori-Zwanzig d)kp(t):LJ dr dp g(r)G(p/+2) x(t) F(r(t))
representation by 8\/§mp(2) r(t)
~ ~ n
C(a,2)=v§[z+K(q,2] %, (1) ><[p§+2pé]+—2f dr dp g'(r)G(p//2)
8\/§m

wherev,= ykgT/m is the thermal speed of the particle and X2 .

K(q,2) is the first-order memory function. An exact expres- XT[px(t) — Pl (3b)
sion forK is given by Eq.(12) of | in terms of ¢-(q,2), the

longitudinal stress correlation function. But to be consistent n X2

with the spirit of the binary collision approximation, we keep ¢, ,(t)= —j dr dp g'(r)G(p/ V2) —X(t)Fy(r (1)),
only those terms that have an explicit density dependence of 4\2m r

up to first order in density and this requires that we take (30)
K(a,2)~ ¢ (q,2). In addition, only lim_o¢"(q,t)/g? WhereG(p)=(2wp§)’3lze’p2’293 and po=mv,. The time
= ¢'(t) is required to compute the correlation function of evolution ofr(t) andp(t) is governed by Newton’s law in
interest in this paper. The Kubo time integral of this functionne form

yields the longitudinal viscosity. In fact, it is shown analyti-

cally in | that ¢ (t) and hence viscosity reduces to the well- .. 2 2 du(r)

known Enskog result for a hard-sphere fluid. We first obtain X= pX:EFX(r): m ox
three-dimensional integral expressions k(t), reduced ) ,

from the original six-dimensional integrals, and then evalu-vhereu(r) is the two-body central potential.

ate them numerically for the Lennard-Jones potential for a 1h€ integrals appearing in E¢3) are six dimensional
few density-temperature states. since they involve momentum and position of a particle.

Introducing the kinetic-kinetic Kk), kinetic-potential éohnsop} ag.d Pop[éz] r;.ave fd(re]vgloped Ia procr:]edu.rehthat re-
(kp), and potential-potentialp(p) parts, we write uces the dimensionality of the integrals to three; these vari-
ables are the radial distance the total relative energi,
and the relative angular momentumit is also necessary to

B"(1) = i) + biep(D) + (D). (2 sum over both positive and negative initial radial velocities:
this is indicated by the symbadf, with v=+1 for r(0)
Equation(36) of | yields the terms >0 andv=—1 forr(0)<0. Now defining the new variables

s and\ by E=u(r)+mv§s andl=mu,y/sr sin \ and writ-
ing Au,(t)=u(r)—u(r,(t)), Egs.(3) can be reduced to the
*Permanent address: Centre of Advanced Study in Physics, Pafsllowing form, suitable for numerical evaluation using
jab University, Chandigarh 160 014, India. Gaussian quadrature:
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4\Jmnvd (= * ml2 Au,(t
¢kk(t)=303+Tof dr rzg(r)f ds e’ssl’ZJ d\ sinA Y, [(5+4s) (2)—252
0 0 0 v m

2sy/st,(t)r sin\
14
vOr V(t)

SiN2I\N—va,(t)]+2s

Uo

( 2rzsin2}\> Au,(t)
s| 1— +

r(t)2 moj

cosZ[)\—vay(t)]], (48

i) = %Kdr r2g(r)f:ds e-Sslfzfoﬂzd)\ SIS T (OF(r,(0){5+45+25 oS TN~ var, (D]}

4
\/_nvoj dr r3g’(r)f ds e sl’zf d\ sm)\z { [2+cos2av(t)]
Uo
( 2r smz)\) Jst,(tr sink }
+s| 1—————]c0S2x,(t) —S COS2A — ——————sin2a,(t) ¢, (4b)
rv(t) vOrV(t)
— 2\/;'1 ” 3~/ * —Sal/2 ml2 H
d)pp(t)_mfo dr rog (r)f0 ds € °s fo da sm)\zv r, (OF(r, (t))[2+cos 2, (t)]. (40

The integrals in Eqg.(4) have been evaluated for the lision contribution for a realistic fluid does have negative

Lennard-Jones potential(r)=4e¢[(r/o) 12— (r/o) ] for
selected density and temperature statds) was obtained
from optimized cluster theorj3]. A Verlet-type algorithm
was used to obtain,(t)and «,(t) for eachr, s, N\, andv
required by the quadrature. Dimensionless units e
=t/7, where r=(mo?/48¢)Y? (~0.31 ps for argoy) n*

=nc?, andT* =kgT/e. Some details of similar calculations

have been described in our earlier pagér$], and a more

complete description of the method is given by Johnson and
Pope[2]. Therefore, in this paper we simply present the nu-
merical results for a few selected thermodynamic states, the
object being to study the time evolution of the binary com-
ponent of the stress autocorrelation function for the Lennard-

Jones potential.

Figure Xa) shows the results fos"(t) in dimensionless

units [to convert to physical units multiply by?/r?~1.2
X 10° m%<* for argor, as a function oft* for (n*,T*)
equal to(0.2, 1.46, and Fig. 1b) for (0.2, 2.5. From these
figures it is seen that only thiek and pp contributions are

appreciable fot* <1, and that thekp contribution remains

small for all time. Thekk contribution persists for* > 1, but

the pp is negligible fort* > 2. (This result is especially true

for the higher temperature stat€igures 2a) and 2b) show
¢“(t) for medium density states ¢0.4, 1.46 and (0.4, 2.5.

For this higher density thep contribution is dominant for

t*<0.5 and is comparable to thek contribution for 0.5

<t*<2. Thekk term decays slowly compared to the other
two contributions, but is not considered significant. Figure 3

shows the result for the argon triple-point stéeB4, 0.72.
It indicates that thep is the dominant contribution.

regions, particularly at high density and low temperature
states. Thus it cannot be described by a simple fast decaying
function, as is often assumed. This notion is possibly valid
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There are no computer simulation data available to com- "

pare with our numerical results. However, two significant

FIG. 1. Plot of the longitudinal stress correlation function

points are to be noted from our results. The first is that thest(t*) as a function of timdin dimensionless units defined in the

binary collision contribution is appreciable at all thermody- texi). The solid curve is the total; the dashed isps component;
namic states, and not just for short times. It does contributéhe dotted itskp component; and the dash-dotted line kts com-

at intermediate times, 05t* <2. Secondly, the binary col-

ponent.(a) n*=0.2,T*=1.46; (b) n*=0.2,T* =2.5.
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0 1 2 8 4 5 FIG. 3. Same as Fig. 1, but for the triple point of argori;
! =0.84,T*=0.72.

whereD* is the diffusion coefficient in reduced units. Using
the appropriate numbers, we find that the collision time var-
ies between 0.2 at the triple point to 2.0 at the lowest density
considered. Thus we note from the figures that at the triple
point, the binary collision contribution goes negative at about
two collision times and then slowly decays to zero at about
ten collision times. At the lowest density considered, there is
a fast decay until about half a collision time followed by a
considerably slower decay to zero at about two collision
times.
A perusal of our earlier calculatiofd,5] clearly indicates

similar time evolutions for the memory functions associated
with the velocity correlation function and transverse current

0 1 2 3 4 5 correlation function. Since computer simulation data were

FIG. 2. S Fia. 1 b tf(‘“ *Z0.4,T* =1.46{b) n* available for these correlation functions, we were able to
oA, gme as Fg. 1, but ey n==9.4,17=1.20{b) n identify the time scales for which binary collisions are sig-
o e nificant for a continuous potential and when multiparticle

for a hard sphere model in which the two-particle coIIisionsCOIIiSions start to play a significant role.
are instantalrjleous In the case of the Lenngrd-Jones otentja It is believed that a truly microscopic theory of time cor-
i . P re'lation functions of realistic fluids would involve an appro-
the particles experience the effect of the force for a much_. L . L .
longer length(or equivalently time scale. In fact, one must priate combination of binary and multiparticle collision con-
g 9 a y ) ' tributions. The latter contribution has been traditionally

include the effects of both bound and scattering states of thﬁandled by mode coupling theories, while the former has

paﬁlcvlveo:ﬂdatfeo rg;ni%?grseé)toin:g;te the time scales of ourbeen modeled by a Gaussian or similar fast decaying func-
. . ) s ; ., tion with no negative features. However, our results indicate

binary collision contribution results to “collision times. ; . . ; ;
that the time evolution of the binary component is not simple

Since one cannot define a collision time unambiguously for g . e ! :
and that there is an overlap with time scales involved in

continuous potential, we introduce an Enskog collision 'umemode coupling. Hence a simple addition of these two com-

7e, Modified for a continuous potentigd] through the rela- ponents, as is common practice, is not justified. It is not as

tion yet clear how to include both effects in a microscopic theory
. D* for a continuous potential. It is hoped that our results would
T’EE—E=32—, (5  be useful in the development of a tractable microscopic

T T* theory of fluids.
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