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Binary collision contribution to the longitudinal current correlation function of dense fluids:
Numerical results
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Numerical results are obtained for the binary collision contribution to the longitudinal stress correlation
function of Lennard-Jones fluids for a few selected densities and temperatures. It is found that the time
evolution of the correlation function cannot be approximated by a simple, fast decaying function, like a
Gaussian, at any thermodynamic state.@S1063-651X~98!12005-6#

PACS number~s!: 51.10.1y, 61.20.Ne, 66.20.1d, 51.20.1d
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In an earlier paper@1#, hereafter referred to as I, we de
rived an expression for the binary collision contribution
the first order space-time memory function of the longitu
nal current correlation function for a fluid interacting throu
a continuous potential.

The Fourier-Laplace transform of the longitudinal curre
correlation functionC(q,t) is given in the Mori-Zwanzig
representation by

C̃~q,z!5v0
2@z1K̃~q,z!#21, ~1!

wherev05AkBT/m is the thermal speed of the particle an
K̃(q,z) is the first-order memory function. An exact expre
sion forK is given by Eq.~12! of I in terms off̃L(q,z), the
longitudinal stress correlation function. But to be consist
with the spirit of the binary collision approximation, we kee
only those terms that have an explicit density dependenc
up to first order in density and this requires that we ta
K̃(q,z)'f̃L(q,z). In addition, only limq→0fL(q,t)/q2

[fL(t) is required to compute the correlation function
interest in this paper. The Kubo time integral of this functi
yields the longitudinal viscosity. In fact, it is shown analy
cally in I thatfL(t) and hence viscosity reduces to the we
known Enskog result for a hard-sphere fluid. We first obt
three-dimensional integral expressions forfL(t), reduced
from the original six-dimensional integrals, and then eva
ate them numerically for the Lennard-Jones potential fo
few density-temperature states.

Introducing the kinetic-kinetic (kk), kinetic-potential
(kp), and potential-potential (pp) parts, we write

fL~ t !5fkk~ t !1fkp~ t !1fpp~ t !. ~2!

Equation~36! of I yields the terms
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fkk~ t !53v0
21

n

16A2m2p0
2E dr dp g~r !G~p/A2!@px

21p0
2#

3@px~ t !22px
2#, ~3a!

fkp~ t !5
n

8A2mp0
2E dr dp g~r !G~p/A2!

x~ t !2

r ~ t !
F„r ~ t !…

3@px
212p0

2#1
n

8A2m2E dr dp g8~r !G~p/A2!

3
x2

r
@px~ t !22px

2#, ~3b!

fpp~ t !5
n

4A2m
E dr dp g8~r !G~p/A2!

x2

r
x~ t !Fx„r ~ t !…,

~3c!

whereG(p)5(2pp0
2)23/2e2p2/2p0

2
and p05mv0 . The time

evolution of r (t) and p(t) is governed by Newton’s law in
the form

ẍ5 ṗx5
2

m
Fx~r !52

2

m

]u~r !

]x
,

whereu(r ) is the two-body central potential.
The integrals appearing in Eq.~3! are six dimensional

since they involve momentum and position of a partic
Johnson and Pope@2# have developed a procedure that r
duces the dimensionality of the integrals to three; these v
ables are the radial distancer , the total relative energyE,
and the relative angular momentuml . It is also necessary to
sum over both positive and negative initial radial velocitie
this is indicated by the symbol(n with n511 for ṙ (0)
.0 andn521 for ṙ (0),0. Now defining the new variable
s andl by E5u(r )1mv0

2s and l 5mv0Asr sin l and writ-
ing Dun(t)5u(r )2u„r n(t)…, Eqs.~3! can be reduced to the
following form, suitable for numerical evaluation usin
Gaussian quadrature:
n-
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fkk~ t !53v0
21

4Apnv0
2

15
E

0

`

dr r 2g~r !E
0

`

ds e2ss1/2E
0

p/2

dl sinl(
n

H ~514s!
Dun~ t !

mv0
2

22s2

1n
2sAsṙn~ t !r sinl

v0r n~ t !
sin 2@l2nan~ t !#12sF sS 12

2r 2sin2l

r n~ t !2 D 1
Dun~ t !

mv0
2 Gcos 2@l2nan~ t !#J , ~4a!

fkp~ t !5
4Apn

15m
E

0

`

dr r 2g~r !E
0

`

ds e2ss1/2E
0

p/2

dl sinl(
n

r n~ t !F„r n~ t !…$514s12s cos 2@l2nan~ t !#%

1
4Apnv0

2

15
E

0

`

dr r 3g8~r !E
0

`

ds e2ss1/2E
0

p/2

dl sinl(
n

H Dun~ t !

mv0
2 @21cos 2an~ t !#

1sS 12
2r 2sin2l

r n~ t !2 D cos 2an~ t !2s cos 2l2
Asṙn~ t !r sinl

v0r n~ t !
sin 2an~ t !J , ~4b!

fpp~ t !5
2Apn

15m
E

0

`

dr r 3g8~r !E
0

`

ds e2ss1/2E
0

p/2

dl sinl(
n

r n~ t !F„r n~ t !…@21cos 2an~ t !#. ~4c!
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The integrals in Eq.~4! have been evaluated for th
Lennard-Jones potentialu(r )54e@(r /s)2122(r /s)26# for
selected density and temperature states;g(r ) was obtained
from optimized cluster theory@3#. A Verlet-type algorithm
was used to obtainr n(t)and an(t) for eachr , s, l, and n
required by the quadrature. Dimensionless units aret*
5t/t, where t5(ms2/48e)1/2 ('0.31 ps for argon!, n*
5ns3, andT* 5kBT/e. Some details of similar calculation
have been described in our earlier papers@4,5#, and a more
complete description of the method is given by Johnson
Pope@2#. Therefore, in this paper we simply present the n
merical results for a few selected thermodynamic states,
object being to study the time evolution of the binary co
ponent of the stress autocorrelation function for the Lenna
Jones potential.

Figure 1~a! shows the results forfL(t) in dimensionless
units @to convert to physical units multiply bys2/t2'1.2
3106 m2/s2 for argon#, as a function oft* for (n* ,T* )
equal to~0.2, 1.46!, and Fig. 1~b! for ~0.2, 2.5!. From these
figures it is seen that only thekk and pp contributions are
appreciable fort* ,1, and that thekp contribution remains
small for all time. Thekk contribution persists fort* .1, but
the pp is negligible fort* .2. ~This result is especially true
for the higher temperature state.! Figures 2~a! and 2~b! show
fL(t) for medium density states of~0.4, 1.46! and~0.4, 2.5!.
For this higher density thepp contribution is dominant for
t* ,0.5 and is comparable to thekk contribution for 0.5
,t* ,2. Thekk term decays slowly compared to the oth
two contributions, but is not considered significant. Figure
shows the result for the argon triple-point state~0.84, 0.72!.
It indicates that thepp is the dominant contribution.

There are no computer simulation data available to co
pare with our numerical results. However, two significa
points are to be noted from our results. The first is that
binary collision contribution is appreciable at all thermod
namic states, and not just for short times. It does contrib
at intermediate times, 0.5,t* ,2. Secondly, the binary col
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lision contribution for a realistic fluid does have negati
regions, particularly at high density and low temperatu
states. Thus it cannot be described by a simple fast deca
function, as is often assumed. This notion is possibly va

FIG. 1. Plot of the longitudinal stress correlation functio
fL(t* ) as a function of time~in dimensionless units defined in th
text!. The solid curve is the total; the dashed is itspp component;
the dotted itskp component; and the dash-dotted line itskk com-
ponent.~a! n* 50.2,T* 51.46; ~b! n* 50.2,T* 52.5.
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for a hard sphere model in which the two-particle collisio
are instantaneous. In the case of the Lennard-Jones pote
the particles experience the effect of the force for a mu
longer length~or equivalently time! scale. In fact, one mus
include the effects of both bound and scattering states of
particle in a continuous potential.

It would be of interest to relate the time scales of o
binary collision contribution results to ‘‘collision times.’
Since one cannot define a collision time unambiguously fo
continuous potential, we introduce an Enskog collision ti
tE , modified for a continuous potential@6# through the rela-
tion

tE* [
tE

t
532

D*

T*
, ~5!

FIG. 2. Same as Fig. 1, but for~a! n* 50.4,T* 51.46;~b! n*
50.4,T* 52.5.
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whereD* is the diffusion coefficient in reduced units. Usin
the appropriate numbers, we find that the collision time v
ies between 0.2 at the triple point to 2.0 at the lowest den
considered. Thus we note from the figures that at the tr
point, the binary collision contribution goes negative at ab
two collision times and then slowly decays to zero at ab
ten collision times. At the lowest density considered, there
a fast decay until about half a collision time followed by
considerably slower decay to zero at about two collis
times.

A perusal of our earlier calculations@4,5# clearly indicates
similar time evolutions for the memory functions associa
with the velocity correlation function and transverse curre
correlation function. Since computer simulation data we
available for these correlation functions, we were able
identify the time scales for which binary collisions are si
nificant for a continuous potential and when multipartic
collisions start to play a significant role.

It is believed that a truly microscopic theory of time co
relation functions of realistic fluids would involve an appr
priate combination of binary and multiparticle collision co
tributions. The latter contribution has been traditiona
handled by mode coupling theories, while the former h
been modeled by a Gaussian or similar fast decaying fu
tion with no negative features. However, our results indic
that the time evolution of the binary component is not sim
and that there is an overlap with time scales involved
mode coupling. Hence a simple addition of these two co
ponents, as is common practice, is not justified. It is not
yet clear how to include both effects in a microscopic theo
for a continuous potential. It is hoped that our results wo
be useful in the development of a tractable microsco
theory of fluids.

FIG. 3. Same as Fig. 1, but for the triple point of argon;n*
50.84,T* 50.72.
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